

Explainable hybrid convolutional and transformer network for pediatric sleep apnea diagnosis using nocturnal oximetry

C. García-Vicente, G.C Gutiérrez-Tobal, J. Gómez-Pilar, F. Vaquerizo-Villar, A. Martín-Montero, M. Domínguez-Guerrero, D. Gozal, R. Hornero

Background

- Pediatric obstructive sleep apnea (OSA) is a common respiratory disorder that leads to intermittent hypoxemia and desaturation-reoxygenation patterns in oxygen saturation (SpO₂).
- Polysomnography (PSG), the standard diagnostic method, is costly, complex, and inconvenient, particularly for children. Therefore, a timely and precise diagnosis is of utmost importance.

Objective

This study assesses the effectiveness of an interpretable hybrid convolutional neural network and transformer (CNN-TF) model, by overnight SpO₂ to estimate the 4 OSA severities (no OSA, mild OSA, moderate OSA, and severe OSA) and uncover relevant SpO₂ patterns associated with the disease.

Materials and Methods

1,609 children from
Childhood
Adenotonsillectomy
Trial (CHAT)

overnight SpO₂ signals

Whole-night SpO₂ recordings (*L*=8h, 28,800 samples)

Deep-learning approach CNN-TF model

No OSA/Mild OSA/Moderate
OSA/Severe OSA prediction for
each sample

Grad-CAM method

Per- patient heatmap: most relevant regions of SpO₂ to predict each OSA severity

Key Results

Diagnostic performance

Cohen's 4-class kappa 0.529

4-class accuracy 68.56%

AHI cutoff	Se	Sp	LR ⁺	Acc
	00.6	FO 6	1.0	04.0
1e/h	90.6	50.8	1.8	81.9
5e/h	85.6	93.3	12.8	91.0
10e/h	80.5	96.9	26.0	94.7

Conclusions

Integrating an interpretable CNN-TF model in the analysis of nocturnal SpO_2 provides a reliable diagnosis of pediatric OSA. Grad-CAM was useful for interpreting the proposed model and enabled achieving a deeper understanding of the pathophysiological behavior of SpO_2 related to pediatric OSA.

Acknowledgement

This work is part of the projects PID2023-148895OB-I00, TED2021-131913B-I00, and CPP2022-009735, funded by MCIN/AEI/10.13039/501100011033 and the European Union "NextGenerationEU"/PRTR. This research was also cofunded by the European Union through the Interreg VI-A Spain-Portugal Program (POCTEP) 2021-2027 (0043_NET4SLEEP_2_E), and by "CIBER-Consorcio Centro de Investigación Biomédica en Red" (CB19/01/00012) through "Instituto de Salud Carlos III.

