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Abstract— Pediatric obstructive sleep apnea (OSA) is a 

breathing disorder marked by pauses in airflow (apneas) and 

reduced airflow (hypopneas), contributing to neurocognitive 

and behavioral impairments, cardiovascular complications, and 

other health issues in affected children. Polysomnography is the 

gold standard for diagnosis, but complexity, high cost, and 

limited accessibility issues often lead to underdiagnosis. To 

address these challenges, we propose a simplified diagnostic 

approach based on blood oxygen saturation (SpO2) recordings 

from nocturnal oximetry. A total of 1,609 SpO2 recordings from 

the Childhood Adenotonsillectomy Trial (CHAT) were 

analyzed. We developed an interpretable approach leveraging a 

convolutional-transformer network to estimate pediatric OSA 

severity. Furthermore, we evaluated the explainable artificial 

intelligence method Gradient-weighted Class Activation 

Mapping (Grad-CAM).  The model achieved 4-class Cohen’s 

kappa and accuracy of 0.529 and 68.56% in the test set, 

respectively. The proposed model demonstrated enhanced 

performance correlating with increasing disease severity, with 

accuracy values ranging from 82% to 95% at different severity 

cut-offs, thereby signaling improved diagnostic performance 

when compared to previous approaches. Furthermore, Grad-

CAM identified key SpO2 patterns linked to OSA, such as SpO2 

desaturations related to clusters of apneic events and 

desaturations occurring independently of events. This 

innovative approach represents a promising alternative for 

diagnosing OSA and provides valuable insights into respiratory 

abnormalities associated with pediatric OSA. 

 
Clinical Relevance—This study highlights the potential of an 

interpretable deep-learning approach using overnight oximetry 

for diagnosing pediatric obstructive sleep apnea. It effectively 

identifies clinically relevant desaturation patterns associated 

with the disease and supports its early, objective, and efficient 

detection in clinical practice. 

I. INTRODUCTION 

Obstructive sleep apnea (OSA) in children is a respiratory 
disorder characterized by recurrent episodes of partial or 
complete upper airway obstruction during sleep, leading to 
intermittent hypoxemia and desaturation-reoxygenation 
patterns in oxygen saturation (SpO2) [1]. These fluctuations in 
SpO2 directly reflect the respiratory disturbances underlying 
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OSA, including hypopneas and apneas, which impair tissue 
oxygenation and metabolic homeostasis [1]. The severity of 
these events is associated with systemic effects such as 
autonomic dysregulation, cardiovascular dysfunction, and an 
increased risk of long-term comorbidities, especially in severe 
OSA cases [2].  

The gold standard for diagnosing OSA is overnight 
polysomnography (PSG), which monitors multiple biomedical 
signals, including SpO2, to calculate the apnea-hypopnea 
index (AHI) and classify OSA severity (no OSA: AHI<1 
events/hour, e/h; mild OSA: 1≤AHI<5 e/h; moderate OSA: 
5≤AHI<10 e/h; and severe OSA: AHI≥10 e/h) [3]. While PSG 
is highly effective, its widespread use is limited by high costs, 
restricted accessibility, and the discomfort of the procedure, 
leading to significant underdiagnosis in children [4]. 

In this context, the SpO2 signal has emerged as a promising 
alternative for evaluating OSA, as it is non-invasive and 
directly reflects the hypoxemia and desaturation-
reoxygenation patterns characteristic of the disorder [5]. In 
recent years, deep learning (DL) methods have demonstrated 
significant potential for the automated analysis of SpO2, easing 
OSA detection without necessarily requiring PSG. However, 
in the pediatric population, the development of DL models for 
OSA prediction using SpO2 remains limited. To date, the 
extant studies have implemented convolutional and/or 
recurrent neural networks (CNNs, RNNs) to analyze SpO2 
signals and estimate OSA severity [6], [7]. Although these 
studies have shown promising results, more advanced hybrid 
architectures, such as CNNs and transformer (TF) networks, 
which effectively capture both global and local relationships 
in temporal signals, have yet to be explored in this context. 

On the other hand, DL interpretability remains a significant 
barrier to clinical adoption, including the sleep domain [8]. In 
this regard, explainable artificial intelligence (XAI) techniques 
are essential for providing transparency in identifying relevant 
SpO2 patterns and understanding the relationship between 
oxygenation fluctuations and OSA severity. Accordingly, a 
recent adult study applied the Gradient-weighted Class 
Activation Mapping (Grad-CAM) XAI technique to interpret 
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DL models based on cardiorespiratory signals, including  
SpO2, providing key patterns associated with OSA [9].  

Based on the aforementioned considerations, we propose 
an explainable and hybrid DL approach based on a CNN and 
a TF algorithm to estimate pediatric OSA severity from 
nocturnal SpO2 that uses Grad-CAM to identify patterns of 
this signal that drive the model to detect the disease. Thus, this 
study presents two key contributions. First, we propose a DL 
approach based on a CNN-TF architecture with transfer 
learning to estimate the severity of pediatric OSA using SpO2 
signals, aiming to enable automated and efficient diagnosis. 
Second, we propose the Grad-CAM method to identify 
critical patterns in SpO2 signals and provide visual 
interpretations that contribute to a better understanding of the 
relationship between desaturation events and pediatric OSA.  

II. MATERIALS AND METHODS 

A. Signals and subjects 

This study used the public dataset from the Childhood 
Adenotonsillectomy Trial (CHAT), accessible at 
https://sleepdata.org/datasets/chat [10]. A total of 1,609 valid 
SpO2 recordings collected during nocturnal PSG studies of 
children aged 5 to 10 were analyzed. Recordings were 
randomly assigned to three independent subsets with 
approximately 60% for training, 20% for validation, and 20% 
for testing, verifying that age, sex, body mass index, and AHI 
showed no statistically significant differences (p > 0.01) 
between sets. Each subject was uniquely assigned to a single 
set to prevent duplication. Table 1 provides a summary of the 
clinical and sociodemographic data of the participants. 

The single-channel SpO2 signals from CHAT recordings 
were resampled to a frequency of 1 Hz [6]. Recordings were 
empirically set to 8 hours, as this value achieved the highest 
performance on the validation set. Shorter signals were padded 
with zeros at the start, while longer signals were cropped by 
removing data from the beginning, following previous studies 
[11].  Nocturnal SpO2 data were divided into 24 segments, 
each lasting 20 minutes (24×1,200×1=28,800 samples). This 
segmentation approach was determined to be the most 
effective for training a previously evaluated CNN model for 
pediatric OSA diagnosis [6]. Additionally, this format 
facilitated the adaptation of CNN’s optimal architecture for the 
model used in this study. For each subject, the output label was 
the AHI, as annotated in the CHAT dataset.  

B. DL-based approach  

A hybrid approach based on a CNN-TF was developed to 

capture both spatial structure and long-range relationships. 

The model received single-channel overnight SpO2 signals as 

input. The convolutional part corresponded to the previously 

presented CNN model [6]. Subsequently, a time series 

adapted TF-based encoder was implemented using attentional 

mechanisms through the transfer learning technique to 

capture dependencies and contextual information throughout 

the night sequence [12]. The output of the model was the AHI 

for each subject.  

C. AHI Estimation 

It is important to note that the AHI value estimated by this 

model tends to underestimate the AHI from the original PSG, 

since our estimation uses the total recording time, which is 

longer than the total sleep time [13]. To address this 

discrepancy, we re-estimated the final AHI using a support 

vector regression model trained on the training group to 

correct for this bias, following previous studies [13].  

 

D. Interpretability using Grad-CAM 

In this study, the Grad-CAM method was used to analyze 

and understand the internal mechanisms of the model 

concerning identifying apneic events and detecting 

respiratory patterns associated with pediatric OSA [14]. Grad-

CAM calculations involved utilizing gradients from each 

specific convolutional layer to produce heatmaps 

corresponding to each layer. The final heatmap was then 

generated by averaging all the individual layer heatmaps [11]. 

E. Performance assessment 

The diagnostic performance for pediatric OSA was 

assessed using confusion matrices, 4-class accuracy (Acc4), 

and 4-class Cohen's kappa coefficient (k) across four severity 

groups: No OSA, mild, moderate, and severe OSA. 

Additionally, we calculated global accuracy (Acc), sensitivity 

(Se), specificity (Sp), positive and negative predictive values 

(PPV and NPV), as well as the positive likelihood ratio (LR+) 

for AHI severity thresholds of 1, 5, and 10 e/h. 

III. RESULTS 

A. Optimal CNN-TF architecture  

The optimal hyperparameter configuration was determined 

heuristically by training the model on the training set and 

evaluating its performance on the CHAT validation set. 

Cohen's kappa (k) was used as the evaluation metric, 

comparing the actual severity of OSA with the severity 

estimated by the model. The final model was optimized 

through transfer learning from the previously described CNN 

model [6], completed by the addition of a TF-based encoder 

architecture. The CNN-TF architecture included the 

previously presented 6 CNN blocks, each consisting of 64 

filters [6], followed by 7 TF-based encoder layers.  Within 

each TF module, the key dimension for multi-head attention 

was set to 16, with 8 attention heads to capture global 

relationships in the sequence. A dropout rate of 0.1 was 

applied within the TF, while the final dense layer consisted of 

64 units. Finally, a global dropout rate of 0.1 was used. The 

Adam optimizer was used to update the weights with an initial 

learning rate of 10-5. The optimal architecture was trained 

with a batch size of 150 and 100 epochs. 

TABLE I.  DEMOGRAPHIC AND CLINICAL INFORMATION. THE DATA 

ARE PRESENTED AS N (%) OR MEDIAN [INTERQUARTILE RANGE]. 

Variables Training  Validation  Test  

Subjects (n) 987 (61,3%) 323 (20,1%) 299 (18,6%) 

Age (years) 7,0[2,0] 7,0[2,0] 6,9[2,0] 

Males (%) 51,7% 49,2% 46,1% 

BMI (kg/m2) 17,3[5,9] 17,1[6,3] 17,4[6,0] 

AHI(events/h) 2,6 [4,8] 2,5[4,8] 2.3[5,1] 

AHI≥1(e/h)* 487 167 144 

AHI≥5(e/h)* 159 44 49 

AHI≥10(e/h)* 129 45 41 

*AHI≥1 (e/h): mild OSA; AHI≥5: moderate OSA; AHI≥10: severe OSA. 
 



  

B. Pediatric OSA Diagnostic performance 

Fig. 1 shows the confusion matrices after the classification 

of the OSA severity in the CHAT test set. The 4-class metrics 

obtained were Acc4=68.56% and k4 = 0.529. Table 2 shows 

that the highest Acc (94.65%) is obtained for identifying the 

most severely affected children. This is particularly 

remarkable, as these children are the ones who will benefit the 

most from an accurate and timely diagnosis [15]. 

C. SpO2 patterns 

Fig. 2 shows the zooms of the heatmaps obtained using the 
Grad-CAM method on SpO2 signals from a nocturnal 
recording. Fig. 2 (a) shows a SpO2 signal in which Grad-CAM 
identifies clusters of desaturations (SpO2 drops > 3%) by 
leveraging the temporal context of the events within the 
nocturnal time series. Fig. 2 (b) highlights how the model 
focuses its attention on SpO2 desaturation regions with events, 
demonstrating its ability to learn SpO2 patterns associated with 
apneic events. Additionally, the model distinguishes between 
oxygen drops related to OSA desaturations and those 
considered artifacts, prioritizing only those within 
pathophysiological ranges. Finally, in Fig. 2 (c), Grad-CAM 
highlights a signal region without apneic events but with 
desaturations that may not have been annotated by specialists 
or that could be linked to other pathologies, such as chronic 
obstructive pulmonary disease (COPD) [16]. 

IV. DISCUSSION AND CONCLUSIONS  

This work presents the development of an interpretable 
hybrid DL model based on CNN-TF and nocturnal SpO2, 
which has achieved high performance in diagnosing the 
severity of pediatric OSA. Grad-CAM was useful for 
interpreting the proposed model and enabled achieving a 
deeper understanding of the pathophysiological behavior of 
SpO2 related to pediatric OSA. 

According to the explainability obtained from Grad-
CAM, the model's AHI prediction based on information from 
desaturation patterns in the SpO2 signal reflects the 
physiologic response to apneic events, where frequent 
reductions in oxygen levels are key features [1]. Moreover, 
the model's focus on desaturation clusters associated with 

apneic events would help to detect the amplitude and duration 
of these desaturations and the oxygen recovery time, which 
may reveal the severity of the related desaturation and the 
degree of upper airway flow limitation along with declining 
pulmonary functional reserve. In addition, fast oscillations 
and signal fragmentation may also be linked to ventilatory 
instability, which can affect the cardiovascular system [17]. 
Lastly, the examination of the desaturation episodes in this 
study, together with the future inclusion of other signals such 
as electrocardiogram (ECG), could lead to a more precise 
assessment of the cardiovascular risk associated with OSA, 
especially in severe cases [18]. 

When evaluating the performance of our model, notable 
advancements are evident compared to prior studies that also 
relied on SpO2 for diagnosing pediatric OSA. For instance, 
Calderón et al. [19] used SpO2 features for binary 
classification (5 e/h cut-off), achieving a Se of 62% vs. 85.6%, 
Sp of 96% vs. 93.3%, and an Acc of 79% vs. 91%. In 
comparison, the present model demonstrated a significantly 
improved balance between Se and Sp while increasing 
diagnostic Acc. Vaquerizo-Villar et al. [6] used a CNN based 
on SpO2. When compared to this study, our model achieved a 
higher k4 (0.529 vs. 0.510), obtaining a better performance in 
terms of agreement. Moreover, our CNN-TF demonstrated 
key advantages in Se and Acc, particularly at 1 e/h (90.6% vs. 
71.2% and 81.9% vs. 77.6%, respectively), making it more 
effective for detecting the presence of OSA. At 5 and 10 e/h, 
our model achieved a better balance between Se and Sp, with 
slightly improved Se (85.6% vs. 83.7%) at 5 e/h. Moreover, 
the explanation of the model using XAI in this approach 
reflects the major difference and advantage. Mortazavi et al. 
[7] implemented a CNN-RNN model with attention using 
SpO2 signals. In comparison, this study achieved a higher k4 
(0.610 vs. 0.529) by using a smaller and different subset of 
the CHAT dataset (n=844 vs. n=1609). Our approach, using 
the full database and coherently handling longitudinal 
records, offers an advantage in terms of representativeness 
and generalizability of the results. Additionally, Grad-CAM 
highlights the most relevant regions directly in SpO2 input 
without losing the temporal relationship, allowing for a 
physiology-aligned representation. 

Among the limitations of the study, it is worth mentioning 
that only one database was used, and therefore, it would be 
beneficial to validate the model with a larger number of SpO2 
recordings to assess its performance under different 
conditions and in various populations. Additionally, a future 
line of research could focus on evaluating the model using 
global XAI approaches, enabling the quantitative 
identification of relevant SpO2 patterns in the context of 
heterogeneous pediatric phenotypes. 

In conclusion, integrating an interpretable CNN-TF model 
in the analysis of nocturnal SpO2 provides a reliable diagnosis 
of pediatric OSA. Furthermore, Grad-CAM helps to identify 
respiratory patterns related to the disease and suggests other 
patterns not previously annotated or that could be associated 
with other diseases [16]. This approach could serve as a 
foundation for future use of multiple simultaneous signals 
from PSG, such as ECG and SpO2, assessing cardiovascular 
risk, a consequence that is particularly prevalent in severe 
pediatric OSA. Ultimately, our proposed methodology 

 
Figure 1. Confusion matrix for the 4 severity levels in the CHAT test set. 

1: AHI<1 e/h, 2: 1≤AHI<5 e/h, 3: 5≤AHI<10 e/h, and 4: AHI≥10 e/h. 
 

TABLE II.  PERFORMANCE METRICS (%) FOR THE BINARY 

CLASSIFICATION OF THE CNN-TF APPROACH. 

IAH Se(%) Sp(%) PPV(%) NPV(%) LR+ ACC (%) 

1 e/h 90.60 50.77 86.89 60.00 1.84 81.94 

5 e/h 85.56 93.30 84.62 93.75 12.77 90.97 

10 e/h 80.49 96.90 80.49 96.90 25.96 94.65 

 



  

presents a promising alternative to PSG, offering a simplified, 
fast, and objective method for diagnosing pediatric OSA. 
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Figure 2: Grad-CAM displays some representative findings in SpO2 signals from the CHAT test subset. Fig. 2 (a) shows the model's focus on clusters (C) 

of events.  Fig. 2 (b) shows the model focusing on desaturations (D) associated with apneic events. Fig. 2 (c) shows the identification of desaturations (D) 

in the absence of apneic events. The color bar indicates at 0 (yellow) the areas of lower relevance and at 1 (brown) the areas of higher relevance. 

 


